GnuCOBOL Manual

for GnuCOBOL 3.2-rcl

Keisuke Nishida, Roger While, Brian Tiffin, Simon Sobisch
Edition 3.2-rcl

Updated for GnuCOBOL 3.2-rcl

18 January 2023

GnuCOBOL (formerly OpenCOBOL) is a free COBOL compiler and runtime. cobc translates
COBOL source to executable using intermediate C together with a designated C compiler and
linker. cobcrun is a module loader to run generated modules, 1ibcob provides the necessary
runtime.

This manual corresponds to GnuCOBOL 3.2-rcl.

Copyright (©) 2002-2012, 2014-2022 Free Software Foundation, Inc.
Written by Keisuke Nishida, Roger While, Brian Tiffin, Simon Sobisch.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

Table of Contents

1 Getting started......... ... 1
1.1 Hello, world!o 1

2 Compile. 2
2.1 Compiler OPLIONSttt 2
2.1.1 Help OPtIONS . . o oo e e e 2

2.1.2 Build target.o e 3

2.1.3 Source format 3

2.1.4 Warning optionsottt e 4

2.1.5 Configuration OPtiONSttt 6

2.1.6 Listing OPtIONS . . .« vttt ittt e e 8

2.1.7 Debug switches ... 9

2.1.8 MisScellaneousovtiii it 10

2.2 MUultiple SOUTCES . .« oottt et et e 10
2.2.1 Static HnKing 10

2.2.2 Dynamic HnKingt e 11
2.2.2.1 DIIVET PIOZTAINL « .. vttt ettt et et e e e et 11

2.2.2.2 Compiling programs separately, 12

2.2.3 Building Hbrary e 12

2.2.4 Using HDraryo 12

2.3 CInterfacet 12
2.3.1 Writing Main Program in C...... ... i 12

2.3.2 Static linking with COBOL programsccoooiiiiiiiiiiiiniiineann.. 13

2.3.3 Dynamic linking with COBOL programs, 14

2.3.4 Static linking with C programs........... ... 17

2.3.5 Dynamic linking with C programs...............oiiiiiiiiieiiiiiiiieean. 18

2.3.6 Redirecting output to a (FILE *)... 18

3 Customize 19
3.1 Customizing compiler. e 19
3.2 Customizing library 19

4 Optimize. 20
4.1 Optimize OPtIONSttt 20
4.2 Optimize call 20
4.3 Optimize DINary 20

5 Debug....... 21
5.1 Debug options 21
5.2 Source Level Debugger.o 21
0.3 Memory DUmPS e 21
0.4 Tracing exXeCUbIONo e 21

6 Non-standard extensions.....................coiiiiiiioo... 22
6.1 SELECT ASSIGN TO ... e e e 22

6.1.1 Literal flle. . ..o 22

6.1.2 <variable> ... 22
6.1.3 <environment variable> 22
6.2 Indexed file paCKAgES.o 22
6.3 FExtended ACCEPT Statementuuneti e 22
6.3. 1 LINE ..o 23
6.3.2 COLUMN ... e e e e 23
6.3.3 AU O-SKIP ..o 23
6.3.4 BACKGROUND-COLORot e e e 23
0.3.0 BELL ... 23
6.3.6 BLINK ... 23
6.3.7 FOREGROUND-COLORo e 23
6.3.8 LOWELIGH T e e e 23
6.3.9 PROM P T .. 23
6.3.10 PROTECTED e 23
6.3. 11 SIZE .o e 24
6.3.12 UPDATE 24
6.3.13 ON EXCEPTION ... e e e e e e 24
6.3.14 NOT ON EXCEPTION. ... e e e 24
6.4 ACCEPT special Keyst 24
6.4.1 Arrow Keys ..ot 24
6.4.2 Backspace Keyooiiii 24
6.4.3 Delete Keys ..o 24
6.4.4 End Keyo 25
6.4.5 Home Key. ... 25
6.4.6 Insert Key. 25
6.4.7 Tab Keys. .o 25
6.5 Extended DISPLAY statement.......... ... 25
0.5.1 BELL ... 25
6.5.2 BLANK .. 25
6.5.3 ERASE ... 26
6.0.4 SIZE .. o 26
6.5.5 Figurative Constants. 26
6.6 CONTENT-LENGTH et e 26
6.7 CONTENT-OF ..o e 27
7 System Routines........... i, 28
7.1 CBL_GC _GET OP T . e 28
7.2 CBL_GC_HOSTED\t e e e e e 29
7.3 CBL_GC_NANOSLEEP e e e 32
T4 CBL_GC _FORK e e e 32
7.5 CBL_GC_WAITPID ... e e 33
Appendix A Compiler cobc options............................ 34
Al Common OpPtionS .. .vvve ettt e et et e e 34
A2 Warning options 36
A3 Compiler OPTIONS . .«ttt et et e e e 38
A.4 Compiler dialect configuration options.......... ..., 40
Appendix B Reserved Words................................... 47
B.1 Common reserved WordS.oouuttii 47

B.2 Internal registers e 66

Appendix C Intrinsic Functions................................ 67
Appendix D System routines.................... 70
Appendix E Systemnames..................................... 72
E.1 System names: devicet e 72
E.2 System names: feature 72
E.3 System names: switch........ . 72
Appendix F Exception names........................coooua... 73
Appendix G Compiler Configuration........................ .. 77
Appendix H Module loader cobcrun options 84
Appendix I Runtime configuration............................ 85
[.1 General InStructionS.ttt e et e 85
[.2 General environmentttt e 86
13 File T/O oo 89
L4 Screen /O .o 91
L5 Report I/O oo 94

Appendix J GNU Free Documentation License.............. 95

1 Getting started

1.1 Hello, world!

This is a sample program that displays “Hello, world!”:

---- hello.cob - -
* Sample COBOL program
IDENTIFICATION DIVISION.
PROGRAM-ID. hello.
PROCEDURE DIVISION.
DISPLAY "Hello, world!".
STOP RUN.

The compiler, cobc, is executed as follows:

$ cobc -x hello.cob
$./hello
Hello, world!

The executable file name (hello in this case) is determined by removing the extension from the
source file name.

You can specify the executable file name by specifying the compiler option -o as follows:

$ cobc -x -0 hello-world hello.cob
$./hello-world
Hello, world!

The program can be written in a more modern style, with free format code, inline comments,
the GOBACK verb and an optional END-DISPLAY terminator:

--—— hellonew.cob --———-——---————-
*> Sample GnuCOBOL program
identification division.
program-id. hellonew.
procedure division.
display

"Hello, new world!"
end-display
goback.

To compile free-format code, you must use the compiler option -free.

$ cobc -x -free hellonew.cob
$./hellonew
Hello, new world!

2 Compile
This chapter describes how to compile COBOL programs using GnuCOBOL.

2.1 Compiler options

The compiler cobc accepts the options described in this section. The compiler arguments follow
the general syntax cobc options file [file ...]. A complete list of options can be displayed
by using the option —--help.

2.1.1 Help options
The following switches display information about the compiler:
--help, -h

Display help screen (see Appendix A [Appendix A], page 34). No further actions
will be taken.

--version, -V
Display compiler version, author package date and executable build date. No further
actions will be taken.

—dumpversion
Display internal compiler version (plain string of numbers). No further actions will
be taken.

--info Display build information along with the default and current compiler configura-

tions. No further actions will be taken except for further display options.

—--verbose, -V
Verbosely display the programs invoked during compilation and additional diagnos-
tics. Use multiple times to increase the verbosity.

--list-reserved
Display reserved words (see Appendix B [Appendix B], page 47). A Yes/No output
shows if the word is supported!, context sensitive and its aliases. The given options
for reserved words specified for example by option -std=dialect will be taken into
account. No further actions will be taken except for further display options.

--list-intrinsics
Display intrinsic functions (see Appendix C [Appendix C], page 67). A Y/N field
shows if the function is implemented. No further actions will be taken except for
further display options.

--list-system
Display system routines (see Appendix D [Appendix D], page 70). No further actions
will be taken except for further display options.

--list-mnemonics
Display mnemonic names (see Appendix E [Appendix E|, page 72). No further
actions will be taken except for further display options.

--list-exceptions
Display exception names (see Appendix F [Appendix F|, page 73). No further
actions will be taken except for further display options.

1 Support may be partial or complete.

Chapter 2: Compile 3

2.1.2 Build target

The compiler cobc treats files like *.cob, *.cbl as COBOL source code, *.c as C source code,
*.0 as object code, *.1i as preprocessed code and *.so as dynamic modules and knows how to
handle such files in the generation, compilation, and linking steps.

The special input name - takes input from stdin which is assumed to be COBOL source,
and uses a default output name of a.out (or a.so/c/o/1i, selected as appropriate) for the build
type.

By default, the compiler builds a dynamically loadable module.

The following options specify the target type produced by the compiler:

-E Preprocess only: compiler directives are executed, comment lines are removed and
COPY statements are expanded. The output is saved in file *.1.

-C Translation only. COBOL source files are translated into C files. The output is
saved in file *.c.

-S Compile only. Translated C files are compiled by the C compiler to assembler code.
The output is saved in file *.s.

-c Compile and assemble. This is equivalent to cc —c. The output is saved in file *.o.

-m Compile, assemble, and build a dynamically loadable module (i.e., a shared library).

The output is saved in file *.s0.? This is the default behaviour.

-b Compile, assemble, and combine all input files into a single dynamically loadable
module. Unless -o is also used, the output is saved using the first filename as *. so.

-X Include the main function in the output, creating an executable image. The main
entry point being the first program in the file.
This option takes effect at the translation stage. If you give this option with -C,
you will see the main function at the end of the generated C file.

-j, —job, —j=args, —job=args
Run job after compilation. Either from executable with -x, or with cobcrun when
compiling a module. Optional arguments args, if given, are passed to the program
or module command line.

-I directory
Add directory to copy/include search path.

-L directory
Add directory to library search path.

-1 1ib Link the library lib.
-D define Pass define to the COBOL compiler.
-o file Place the output into file.

2.1.3 Source format

GnuCOBOL supports fixed, free, Micro Focus’ Variable, X/Open Free-form, ICOBOL xCard
and Free-form, ACUCOBOL-GT Terminal, and COBOLX source formats. The default for-
mat is the fixed format. This can be overridden either by the >>SOURCE [FORMAT] [IS]
{FIXED|FREE|COBOL85|VARIABLE | XOPEN | XCARD | CRT | TERMINAL | COBOLX} directive, or by one of
the following options:

—-free, -F, -fformat=free
Free format. The program-text area starts in column 1 and continues till the end
of line (effectively 255 characters in GnuCOBOL).

2 The extension varies depending on your host.

Chapter 2: Compile 4

-fixed, -fformat=fixed
Fixed format. Source code is divided into: columns 1-6, the sequence number area;
column 7, the indicator area; columns 8-72, the program-text area; and columns
72-80 as the reference area.?

-fformat=cobol85
Fixed format with enforcements on the use of Area A.

-fformat=variable
Micro Focus’ Variable format. Identical to the fixed format above except for the
program-text area which extends up to column 250 instead of 72.

-fformat=xcard
ICOBOL xCard format. Variable format with right margin set at column 255 instead
of 250.

-fformat=xopen
X/Open Free-form format. The program-text area may start in column 1 unless
an indicator is present, and lines may contain up to 255 characters. Indicator for
debugging lines is ‘D’ (D followed by a space) instead of ‘D’ or ‘d’.

—-fformat=crt
ICOBOL Free-form format (CRT). Similar to the X/Open format above, with lines
containing up to 320 characters and single-character debugging line indicators (‘D’
or ‘d’).

-fformat=terminal
ACUCOBOL-GT Terminal format. Similar to the CRT format above, with indicator
for debugging lines being ‘\D’ instead of ‘D’ or ‘d’. This format is mostly compatible
with VAX COBOL terminal source format.

-fformat=cobolx
COBOLX format. This format is similar to the CRT format above, except that the
indicator area is always present in column 1; the program-text area starts in column
2 and extends up to the end of the record. Lines may contain up to 255 characters.

Note that with source formats XOPEN, CRT, TERMINAL, and COBOLX, missing spaces are not
inserted within continued alphanumeric literals that are truncated before the right margin.

Area A denotes the source code that spans between margin A and margin B, and Area B
spans from the latter to the end of the record. Area A enforcement checks the contents of
Area A, and reports any item that does not belong to the correct Area: this feature helps in
developping COBOL programs that are portable to actual mainframe environments.

In general, division, section, and paragraph names must start in Area A. In the DATA
DIVISION, level numbers ‘01’ and ‘77’, must also start in Area A. In the PROCEDURE DIVISIONS,
statements and separator periods must fit within Area B. Every source format listed above may
be subject to Area A enforcement, except FIXED, FREE, and XOPEN.

Note that Area A enforcement enables recovery from missing periods between paragraphs
and sections.

2.1.4 Warning options

Warnings are diagnostic messages that report constructions that are not inherently erroneous
but that are risky or suggest there may have been an error.

3 Historically, fixed format was based on 80-character punch cards.

Chapter 2: Compile 5

The following options do not enable specific warnings but control the kinds of diagnostics
produced by cobc.

-fsyntax-only
Check Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point cobc bails out
rather than attempting to continue processing the source code. If n is 0, there is
no limit on the number of error messages produced. If -Wfatal-errors is also
specified, then -Wfatal-errors takes precedence over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror=warning
Make the specified warning into an error. The specifier for a warning is appended;
for example -Werror=obsolete turns the warnings controlled by -Wobsolete into
errors. This switch takes a negative form, to be used to negate -Werror for specific
warnings; for example -Wno-error=obsolete makes -Wobsolete warnings not be
errors, even when -Werror is in effect.

The warning message for each controllable warning includes the option that controls
the warning. That option can then be used with -Werror= and -Wno-error= as
described above. (Printing of the option in the warning message can be disabled
using the -fno-diagnostics-show-option flag.)

Note that specifying -Werror=foo automatically implies -Wfoo. However, -Wno-
error=foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
-Wimplicit-define to request warnings on implicit declarations. Each of these specific warn-
ing options also has a negative form beginning ‘-Wno’ to turn off warnings; for example, ~-Wno-
implicit-define. This manual lists only one of the two forms, whichever is not the default.

Some options, such as -Wall and -Wextra, turn on other options, such as -Wtruncate. The
combined effect of positive and negative forms is that more specific options have priority over
less specific ones, independently of their position in the command-line. For options of the same
specificity, the last one takes effect.

-Wall Enable all the warnings about constructions that some users consider questionable,
and that are easy to avoid (or modify to prevent the warning).
The list of warning flags turned on by this option is shown in --help.

-Wextra, -W
Enable every possible warning that is not dialect specific. This includes more infor-
mation than -Wall would normally provide.
(This option used to be called -W. The older name is still supported, but the newer
name is more descriptive.)

-Wwarning
Enable single warning warning.

-Wno-warning
Disable single warning warning.

Chapter 2: Compile 6

-Warchaic
Warn if archaic features are used, such as continuation lines or the NEXT SENTENCE
statement.

-Wcall-params
Warn if non-01/77-level items are used as arguments in a CALL statement. This is
not set with -Wall.

-Wcolumn-overflow
Warn if text after column 72 in FIXED format. This is not set with -Wall.

-Wconstant
Warn inconsistent constant

-Wimplicit-define
Warn if implicitly defined data items are used.

-Wlinkage
Warn dangling LINKAGE items. This is not set with -Wall.

-Wobsolete
Warn if obsolete features are used.

-Wparentheses
Warn about any lack of parentheses around AND within OR.

-Wredefinition
Warn about incompatible redefinitions of data items.

-Wstrict-typing
Warn about type mismatch strictly.

-Wterminator
Warn about the lack of scope terminator END-XXX. This is not set with -Wall.

-Wtruncate
Warn on possible field truncation. This is not set with -Wall.

-Wunreachable
Warn if statements are unreachable. This is not set with -Wall.

-Wadditional
Enable warnings that don’t have an own warning flag.

2.1.5 Configuration options

The compiler uses many dialect specific options. These may be set via a defined dialect by
-std=, a configuration file by -conf= or by using the single dialect flags directly.

See Appendix G [Compiler Configuration|, page 77, and config/*.conf.

Note concerning the defined dialects: The GnuCOBOL compiler tries to limit both the

feature-set and reserved words to the specified compiler when the "strict" dialects are used.
COBOL sources compiled with these dialects are therefore likely to compile with the specified
compiler and vice versa: sources that were compiled on the specified compiler should compile
without any issues with GnuCOBOL.
With the "non-strict" dialects GnuCOBOL will activate the complete feature-set where it doesn’t
directly conflict with the specified dialect, including reserved words. COBOL sources compiled
with these dialects therefore may work only with GnuCOBOL. COBOL sources may need a
change because of reserved words in GnuCOBOL, otherwise offending words word-1 and word-2
may be removed by -fno-reserved=word-1,word-1.

Chapter 2: Compile 7

The dialects COBOL-85, X/Open COBOL, COBOL 2002 and COBOL 2014 are always
"strict".

-std=dialect
Compiler uses the given dialect to determine certain compiler features and warnings.

-std=default
GnuCOBOL dialect, supporting many of the COBOL 2002 and COBOL 2014 fea-
tures, many extensions found in other dialects and its own feature-set

-std=cobol85
COBOL-85 without any extensions other than the amendment Intrinsic Function

Module (1989), source compiled with this dialect is likely to compile with most
COBOL compilers

-std=xopen
X/Open COBOL (based on COBOL-85) without any vendor extensions, source
compiled with this dialect is likely to compile with most COBOL compilers; will warn
items that "should not be used in a conforming X/Open COBOL source program"

-std=cob012002, -std=cobol2014
COBOL 2002 / COBOL 2014 without any vendor extensions, use -Warchaic and
-Wobsolete if archaic/obsolete features should be flagged
-std=ibm-strict, —std=ibm
IBM compatible
-std=mvs-strict, —-std=mvs
MVS compatible
-std=mf-strict, -std=mf
Micro Focus compatible

-std=bs2000-strict, -std=bs2000
BS2000 compatible

-std=acu-strict, —-std=acu

ACUCOBOL-GT compatible

-std=rm-strict, —-std=rm

RM/COBOL compatible
-std=realia-strict, —std=realia
CA Realia II compatible

-std=gcos-strict, —std=gcos
GCOS compatible

-freserved-words=dialect
Compiler uses the given dialect to determine the reserved words.
-conf=<file>
User-defined dialect configuration.
You can override each single configuration entry by using compiler configuration options on
the command line.
Examples:
-frelax-syntax-checks
-frenames-uncommon-levels=warning
—-fnot-reserved=CHAIN, SCREEN
-ftab-width=4
See Appendix A [Compiler cobc options|, page 34.

Chapter 2: Compile 8

2.1.6 Listing options

-t=file Generate and place the standard print listing into file.
-T=file Generate and place a wide print listing into *file.

--tlines=lines
Specify lines per page in print listing, default = 55. Set to zero for no additional
page breaks.

-ftsymbols
Generate symbol table in listing.

-fno-theader
Suppress all headers from listing while keeping page breaks.

-fno-tmessages
Suppress warning and error summary from listing.

-fno-tsource
Suppress actual source from listing (for example to only produce the cross-reference).

-P, -Pdirectory, -P=file
Generate and place a preprocessed listing (old format) into filename.lst,
directory/filename.lst, file.

-Xref
-X Generate cross reference in the listing.

Here is an example program listing with the options -t -ftsymbols:
GnuCOBOL 3.0.0 test.cbl Mon May 14 10:23:45 2018 Page 0001

LINE e O - T

000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. prog.

000003 ENVIRONMENT DIVISION.

000004 CONFIGURATION SECTION.

000005 DATA DIVISION.

000006 WORKING-STORAGE SECTION.

000007 COPY ’values.cpy’.

000001C 78 I VALUE 20.

000002C 78 J VALUE 5000.

000003C 78 M VALUE 5.

000008 01 SETUP-REC.

000009 05 FL1 PIC X(04).

000010 05 FL2 PIC Z2ZZZZ.

000011 05 FL3 PIC 9(04).

000012 05 FL4 PIC 9(08) COMP.
000013 05 FL5 PIC 9(04) COMP-4.
000014 05 FL6 PIC Z,ZZZ.99.
000015 05 FL7 PIC S9(05) SIGN LEADING SEPARATE.
000016 05 FL8 PIC X(04).

000017 05 FL9 REDEFINES FL8 PIC 9(04).
000018 05 FLA.

000019 10 FLB OCCURS I TIMES.
000020 15 FLC PIC X(02).
000021 10 FLD PIC X(20).

000022 05 FLD1 PIC X(100).

000023 05 FLD2 OCCURS M TO J TIMES DEPENDING ON FL5.
000024 10 FILLER PIC X(01).

000025 05 FLD3 PIC X(3).

000026 05 FLD4 PIC X(4).

000027 PROCEDURE DIVISION.

Chapter 2: Compile 9

000028 STOP RUN.

The first part of the listing lists the program text. If the program text is a COPY the line
number reflects the COPY line number and is appended with a ‘C’.

When the wide list option -T is specified, the SEQUENCE columns (for fixed-form reference-
format) are included in the listing.

The second part of the listing file is the listing of the Symbol Table:

GnuCOBOL 3.0.0 test.cbl Mon May 14 10:23:45 2018 Page 0002
SIZE TYPE LVL NAME PICTURE
5204 GROUP 01 SETUP-REC

0004 ALPHANUMERIC 05 FL1 X(04)

0005 ALPHANUMERIC 05 FL2 272777

0004 ALPHANUMERIC 05 FL3 9(04)

0004 NUMERIC 05 FL4 9(08) COMP
0002 NUMERIC 05 FL5 9(04) coMP
0008 ALPHANUMERIC 05 FL6 Z,22Z7.99
0006 ALPHANUMERIC 05 FL7 59(05)
0004 ALPHANUMERIC 05 FL8 X(04)

0004 ALPHANUMERIC-R 05 FL9 9(04)

0060 ALPHANUMERIC 05 FLA

0040 ALPHANUMERIC 10 FLB 0CCURS 20
0002 ALPHANUMERIC 15 FLC X(02)

0020 ALPHANUMERIC 10 FLD X(20)

0100 ALPHANUMERIC 05 FLD1 X(100)
5000 ALPHANUMERIC 05 FLD2 OCCURS 5 TO 5000
0001 ALPHANUMERIC 10 FILLER X(o1)

0003 ALPHANUMERIC 05 FLD3 X(3

0004 ALPHANUMERIC 05 FLD4 X(4)

If the symbol redefines another variable the TYPE is marked with ‘R’. If the symbol is an
array the OCCURS phrase is in the PICTURE field.

The last part of the listing file is the summary of warnings an error in the compilation group:

0 warnings in compilation group
2 errors in compilation group

2.1.7 Debug switches

-g Produce C debugging information in the output.

--debug, -d
Enable all run-time error checks.

-fec=exception-name, —-fno=ec=exception-name
Enable/disable specified exception checks, see Appendix F [Exception Names],
page 73.

-fsource-location
Generate source location code (implied by --debug, -g and -fec); -—-debug implies
—-fec=ALL.

—-fstack-check
Enable PERFORM stack checking (implied by --debug or -g).

-ftrace Generate trace code (log executed procedures, if tracing is enabled).

-ftraceall

Generate trace code (log executed procedures and statements, if tracing is enabled).
-fdebugging-line

Enable debugging lines (‘D’ in indicator column; ‘>>D’ directive).

Chapter 2: Compile 10

-0 Enable optimization of code size and execution speed. See your C compiler docu-
mentation, for example man gcc for details.

-02 Optimize even more.
-0s Optimize for size. Optimizer will favour code size over execution speed.
-fnotrunc

Do not truncate binary fields according to PICTURE.

2.1.8 Miscellaneous

-ext <extension>
Add default file extension.

—-fmfcomment
Treat lines with ‘“*’ or ¢/’ in column 1 as comment (fixed-form reference-format only).

—acucomment
Treat ‘|’ as an inline comment marker.
-fsign=ASCII
Numeric display sign ASCII (default on ASCII machines).

-fsign=EBCDIC
Numeric display sign EBCDIC (default on EBCDIC machines).

-fintrinsics=[ALL|intrinsic function name(,name,...)]
Allow use of all or specific intrinsic functions without FUNCTION keyword.
Note: defining this within your source with CONFIGURATION SECTION. REPOSITORY.
is preferred.

-ffold-copy=LOWER
Fold COPY subject to lower case (default no transformation).

-ffold-copy=UPPER
Fold COPY subject to upper case (default no transformation).

-save-temps (=<dir>)

Save intermediate files (by default, in current directory).
-fimplicit-init

Do automatic initialization of the COBOL runtime system.

2.2 Multiple sources

This section describes how to compile a program from multiple source files.

This section also describes how to build a shared library that can be used by any COBOL
program and how to use external libraries in COBOL programs.

2.2.1 Static linking

The easiest way of combining multiple files is to compile them into a single executable.
One way is to compile all the files in one command:
$ cobc -x -o prog main.cob subrl.cob subr2.cob

Another way is to compile each file with the option -c, and link them at the end. The
top-level program must be compiled with the option -x.

$ cobc -c subrl.cob
$ cobc -c subr2.cob

Chapter 2: Compile 11

$ cobc -c -x main.cob
$ cobc -x -0 prog main.o subrl.o subr2.o

You can link C routines as well using either method:
$ cobc -o prog main.cob subrs.c
or

$ cobc -c subrs.c
$ cobc -c -x main.cob
$ cobc -x -o prog main.o subrs.o

Any number of functions can be contained in a single C file.

The linked programs will be called dynamically; that is, the symbol will be resolved at run
time. For example, the following COBOL statement

CALL "subr" USING X.
will be converted into equivalent C code like this:

int (xfunc) () = cob_resolve("subr");
if (func '= NULL)
func (X);

With the compiler option -fstatic-call, more efficient code will be generated:
subr(X) ;

Please notice that this option only takes effect when the called program name is in a literal
(like CALL "subr"). With a data name (like CALL SUBR), the program is still called dynamically.

2.2.2 Dynamic linking

There are two methods to achieve this: a driver program, or compiling the main program and
subprograms separately.

2.2.2.1 Driver program

Compile all programs with the option -m:
$ cobc -m main.cob subr.cob
This creates the shared object files main.so and subr.so.*
Before running the main program, install the module files in your library directory:
$ cp subr.so /your/cobol/lib

Set the runtime variable COB_LIBRARY_PATH to your library directory, and run the main
program:

$ export COB_LIBRARY_PATH=/your/cobol/lib

(Please notice: You may set the variable via a runtime configuration file, see Appendix I
[Runtime Configuration], page 85. You may also set the variable to directly point to the directory
where you compiled the sources.)

Now execute your program:

$ cobcrun main

4 The extension used depends on your operating system.

Chapter 2: Compile 12

2.2.2.2 Compiling programs separately
The main program is compiled as usual:
$ cobc -x -0 main main.cob
Subprograms are compiled with the option -m:
$ cobc -m subr.cob
This creates a module file subr.so®.
Before running the main program, install the module files in your library directory:
$ cp subr.so /your/cobol/lib

Now, set the environment variable COB_LIBRARY_PATH to your library directory, and run the
main program:
$ export COB_LIBRARY_PATH=/your/cobol/lib
$./main

2.2.3 Building library
You can build a shared library by combining multiple COBOL programs and even C routines:

$ cobc -c subrl.cob

$ cobc -c subr2.cob

$ cc -c subr3.c

$ cc -shared -o libsubrs.so subrl.o subr2.o subr3.o

2.2.4 Using library

You can use a shared library by linking it with your main program.
Before linking the library, install it in your system library directory:
$ cp libsubrs.so /usr/lib
or install it somewhere else and set LD_LIBRARY_PATH:

$ cp libsubrs.so /your/cobol/lib
$ export LD_LIBRARY_PATH=/your/cobol/lib

Then, compile the main program, linking the library as follows:

$ cobc -x main.cob -L/your/cobol/lib -lsubrs

2.3 C interface
This chapter describes how to combine C programs with COBOL programs.

2.3.1 Writing Main Program in C

Include libcob.h in your C program and call cob_init before using any COBOL module. Do
a cleanup afterwards, either by calling cob_stop_run (if your program should terminate) or by
calling cob_tidy (if your program should execute further on without any more COBOL calls).
Calling cob_init, one or several GnuCOBOL modules and then cob_tidy in this sequence can
be done multiple times).

#include <libcob.h>

int
main (int argc, char **argv)
{

/* initialize your program */

5 The extension used depends on your operating system.

Chapter 2: Compile 13

/* initialize the COBOL run-time library =/
cob_init (argc, argv);

/* rest of your program */

/* Clean up and terminate - This does not return */
cob_stop_run (return_status);

}

You can write cobc_init (0, NULL) ; if you do not want to pass command line arguments to
COBOL.

The easiest option to compile and/or link your C program is by passing the work to cobc as
follows:

cobc -x main.c
possibly running in verbose mode to see what cobc does:

cobc -x --verbose main.c # using -x -v or -xv would be also possible
or with several steps:

cobc -c main.c
cobc -x main.o

As an alternative you can use the cob-config tool to get the necessary options to be passed
to the C compiler / linker.

cc -c “cob-config --cflags™ main.c # compile only
cc -o main main.o “cob-config --libs™ # link only

2.3.2 Static linking with COBOL programs
Let’s call the following COBOL module from a C program:

---- say.cob -———————————————————————————
IDENTIFICATION DIVISION.
PROGRAM-ID. say.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 hello PIC X(7).

01 world PIC X(8).

PROCEDURE DIVISION USING hello world.
DISPLAY hello world.
GOBACK.

This program accepts two arguments, displays them, and exits.

From the viewpoint of C, this is equivalent to a function having the following prototype:
extern int say(char *hello, char *world);

So, your main program will look like as follows:

---- hello.c - ————
#include <libcob.h>

Chapter 2: Compile 14

extern int say(char *hello, char #*world);

int

main()

{
int ret;
char hello[8] = "Hello, ";
char world[7] = "world!";

/* initialize the COBOL run-time library */
cob_init (0, NULL);

/* call the static module and store its return code */
ret = say(hello, world);

/* shutdown the COBOL run-time library, keep program running */
(void) cob_tidy();

return ret;

Compile and run these programs as follows:

$ cobc -x hello.c say.cob
$./hello
Hello, world!

or, more split and directly using the C compiler:

$ cc -c ‘cob-config --cflags‘ hello.c
$ cobc -c -static say.cob

$ cobc -x -o hello hello.o say.o

$./hello

Hello, world!

Note: The biggest benefits of static linking are that all programs are verified to be available
in the resulting binary. Furthermore there is a slightly performance benefit in this type of CALL
(not visible for "normal" programs).

2.3.3 Dynamic linking with COBOL programs

You can find a COBOL module having a specific name by using the C function cob_resolve,
which takes the module name as a string and returns a pointer to the module function.

cob_resolve returns NULL if there is no module. In this case, the function cob_resolve_
error returns the error message.

Let’s see an example:

---- hello-dynamic.c -----——————————--—-
#include <libcob.h>

static int (*say) (char *hello, char *world);

int main()
{
int ret;
char hello[8] = "Hello, ";

Chapter 2: Compile

char world[7] = "world!";

/* initialize the COBOL run-time library =/
cob_init (0, NULL);

/* Find the module with PROGRAM-ID "say". */
say = cob_resolve("say");

/* If there is no such module, show error and exit. */
if(say == NULL) {
fprintf (stderr, "Y%s\n", cob_resolve_error());
exit(1);
}

/* Call the module found ... */
ret = say(hello, world);

/* ...and exit with the return code. */
cob_stop_run(ret);

Compile and run these programs as follows:

$ cobc -x -o hello hello-dynamic.c
$ cobc -m say.cob

$ export COB_LIBRARY_PATH=.

$./hello

Hello, world!

The check of the module load as written above can be directly done in libcob as follows:

---- hello-dynamic2.c ----—————————---—-
#include <libcob.h>

int main()

{
int ret;
char hello[8]
char world[7]

"Hello, ";
"world!'";

void *cob_argv[2];
cob_argv[0] = hello;
cob_argv[1] = world;

/* initialize the COBOL run-time library */
cob_init (0, NULL);

/* do a CALL, expecting the module to exist,
otherwise exiting with an error. */
ret = cob_call ("say", 2, cob_argv);

/* ...and exit with the return code. */
cob_stop_run(ret) ;

15

Chapter 2: Compile 16

In any case be aware that all errors that happen within COBOL will exit your program, as
same as a STOP RUN will do.

Depending on the application you possibly want to register C signal handlers; error and/or
exit handlers in C and/or COBOL to do cleanups, logging or anything else.

There is one way to handle all these scenarios with a call, too, using cob_call_with_
exception_check instead of cob_call as follows

---- hello-dynamic3.c ----—-————————————-
#include <libcob.h>

int main()

{

int ret;
char hello[8] = "Hello, ";
char world[7] = "world!";

void *cob_argv[2];
cob_argv[0] = hello;
cob_argv[1] = world;

/* initialize the COBOL run-time library =/
cob_init (0, NULL);

/* do a CALL, catching all possible results, */
ret = cob_call_with_exception_check ("say", 2, cob_argv